Towards a safe, low-cost, intelligent wheelchair

Aniket Murarka1, Shilpa Gulati1, Patrick Beeson2, and Benjamin Kuipers3

1 The University of Texas at Austin
2 Trac Labs, Houston
3 The University of Michigan at Ann Arbor
Overall goal

- To build an Intelligent Wheelchair that acts as a mobility assistant for its human passenger
 - Help people with perception and mobility disabilities

- The wheelchair should be able to autonomously execute commands issued by its passenger
 - Should learn the spatial structure of its environment
 - Should “communicate” with its passenger

- The wheelchair should also ensure the safety of its passenger and be low cost
Contribution: Integration of technologies

- Integration of three technologies necessary for realizing the intelligent wheelchair
 - Local metrical mapping
 - Vision based to ensure detection of all hazards and reduce cost
 - Local topology extraction
 - Symbolic structure extraction to facilitate human-robot interaction
 - Local motion planning
 - Plan trajectories to ensure the passenger’s comfort & safety

These technologies are relevant for other autonomous vehicles, specially those with humans in the loop
The intelligent wheelchair

- Multiple sensors
 - Stereo camera
 - Optical encoders
 - Lasers

- Computational backpack interfaces with hardware

- Laptop runs code-base
 - Uses the HSSH cognitive architecture
Integration

Robot
- Stereo Camera
- Lasers
- Encoders
- Motors

Local Metrical Mapping
- Safety Map
- Pose

Localization
- Laser Scan
- Odometry
- Pose

Control
- Velocity command

User Interface
- User

Local Topology Extraction
- Safety Map
- Pose

Topology + Gateways

Local Motion Planning
- Trajectory
Vision-based local metrical mapping

- Use stereo cameras to build the local metrical map
 - Cameras are low-cost compared to lasers
 - Cameras see in 3D and detect hazards that 2D lasers cannot

- The vision-based mapping algorithm [Murarka & Kuipers, IROS-09]
 - Detects inclines, drop-off edges, overhangs, & obstacles
 - Works in real-time
 - Has been quantitatively shown to rarely mark unsafe places as safe
Vision-based mapping: Algorithm outline

- Compute depth map from stereo images
- Build a 3D model
- Segment and fit planes to 3D Model
- Analyze planes to get a local safety map

Legend:
- Level
- Inclined
- Non-ground
- Drop-off Edge
- Unknown
Integration

Robot
- Stereo Camera
- Lasers
- Encoders
- Motors

User

User Interface
- Safety Map

Local Metrical Mapping
- Stereo Image
- Laser Scan
- Odometry
- Velocity commands

Localization
- Pose

Local Motion Planning
- Trajectory

Control

Local Topology Extraction
- Safety Map
- Pose

Topology + Gateways

Stereo Image

Trajectory
Local topology: A symbolic model

- *Local topology* can be efficiently created from the local safety map

- The local topology symbolically describes the local surround
 - Detect places vs. paths
 - Describe places using circular ordering of local paths
 - Uses a concept called *gateways*.

- *Gateways* can be thought of as exits or entrances
 - Can provide goal poses to local motion planning

- Provides human user with a small number of high-level actions
 - e.g., turn left, go forward
 - Currently a simple GUI is used to *Travel* between and *Turn* at intersections.
Local topology extraction: Algorithm outline

- Find gateways
- Align the gateways to find paths
- The local topology is the circular ordering of paths
- The ordering provides natural descriptions of left, right, forward, etc.

\[
\begin{align*}
(\langle \tilde{\pi}_a^+, 1 \rangle & \leftrightarrow \langle g_4, \text{in} \rangle, \langle g_1, \text{out} \rangle) \\
(\langle \tilde{\pi}_b^+, 1 \rangle & \leftrightarrow \langle g_2, \text{out} \rangle) \\
(\langle \tilde{\pi}_c^-, 0 \rangle & \leftrightarrow \langle g_5, \text{in} \rangle) \\
(\langle \tilde{\pi}_d^+, 1 \rangle & \leftrightarrow \langle g_3, \text{out} \rangle) \\
(\langle \tilde{\pi}_a^-, 1 \rangle & \leftrightarrow \langle g_1, \text{in} \rangle, \langle g_4, \text{out} \rangle) \\
(\langle \tilde{\pi}_d^-, 0 \rangle & \leftrightarrow \langle g_3, \text{in} \rangle) \\
(\langle \tilde{\pi}_c^+, 1 \rangle & \leftrightarrow \langle g_5, \text{out} \rangle) \\
(\langle \tilde{\pi}_b^-, 0 \rangle & \leftrightarrow \langle g_2, \text{in} \rangle)
\end{align*}
\]
Integration

User Interface

User

Local Metrical Mapping

Safety Map

Stereo Image

Local Topology Extraction

Topology + Gateways

Pose

Local Motion Planning

Trajectory

Control

User

Robot

Stereo Camera

Lasers

Encoders

Motors

Safety Map

Pose

Laser Scan

Odometry

Stereo Image

Laser Scan

Odometry

Velocity commands

Trajectory
The motion of a wheelchair should not only be safe, it should be comfortable.

The framework for comfortable motion [Gulati et al., IROS-09]

- Characterizes discomfort as a performance measure
- Finds a trajectory that locally minimizes discomfort
 - A trajectory encodes a geometric path and motion on the path in time
- Works in real-time for a variety of motion tasks
- Is customizable according to user preferences
Safe and comfortable local motion planning: Algorithm outline

- Plan obstacle free path using RRT.

- Create an initial guess of trajectory using
 - the waypoints from RRT,
 - the boundary conditions on pose, velocity and acceleration.

- Use variational optimization to find a trajectory that
 - minimizes a cost functional in the neighborhood of the initial guess,
 - satisfies boundary conditions.

- The cost functional balances travel time and smoothness of motion.
 \[
 J = t_f + \int_0^{t_f} (w_1 f_1 + w_2 f_2 + \ldots) dt
 \]

\(f_1 \) and \(f_2 \) are functions of pose and its derivatives.
Integration

Robot
Stereo Camera
Lasers
Encoders
Motors

User Interface
User

Local Metrical Mapping
Stereo Image
Safety Map
Pose

Localization
Laser Scan
Odometry
Pose

Local Motion Planning
Trajectory

Control
Velocity commands

Topology + Gateways

Stereo Image
Safety Map
Pose

Local Topology Extraction

Topography + Gateways
Experiments: Successes
Vision map + Local topology

- Local topology extracted using a vision map differs from that obtained using a laser map
- Happens because vision sees additional objects
 - Narrow FOV is another cause

Four-way corridor intersection with stairs

Laser map

Laser based local topology identifies a place

Vision-based local topology is different
Vision map + Local topology

When the robot investigates the region further it identifies the drop-off at the stairs

The vision-based local topology is updated and the gateway at the top of the stairs is removed
Vision map + Comfortable motion

- The vision-based maps successfully support motion planning
 - Algorithm is unchanged from that used with lasers

- Additionally, vision maps allow the robot to avoid hazards not seen by the horizontal laser

Environment with an overhanging bench

RRT plan

Trajectory successfully followed by the robot
Vision map + Local topology + Comfortable motion example: Sidewalk navigation

Navigating a sidewalk
Local topology correctly identifies the sidewalk as a path
Planned trajectory

Map built using the horizontal lasers. The drop-off at the sidewalk curb is not identified. Such a map is unsafe to use.
Experiments: Failures
Poor texture

- Regions with poor texture get marked as unknown
 - The robot is still safe as unknown areas are not traversed

- The extracted local topology can be incorrect in some circumstances

A path is incorrectly identified as a “T” junction
Summary of experimental results

- Vision maps model additional regions in the world compared to laser maps. As a result:
 - local topologies differ between vision and laser maps
 - motion planning is safer as more hazards are seen

- Low texture and low light areas cause some regions to appear as unknown in vision maps
 - This leads to the extraction of incorrect local topologies
Conclusions

- Demonstrated the integration of three technologies necessary for an intelligent wheelchair
 - **Vision-based local metrical mapping**: For detecting hazards
 - **Local topology extraction**: For natural human-robot interaction
 - **Safe and comfortable motion planning**: For human-acceptable motion

- The three technologies demonstrated should be useful for a variety of intelligent vehicles
Future work

- Handling low texture and poor lighting when building maps and extracting topologies
- Guaranteeing hazard avoidance in trajectory planning
Thank You!

Questions?